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Kinetic equations for diffusion-controlled
precipitation reactions
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In the past it has been suggested that the Johnson-Mehl-Avrami Kolmogorov (JMAK)

equation can be used to describe the progress of a large number of nucleation and growth

reactions, including diffusion-controlled precipitation reactions, provided that nucleation is

random. However, its validity has only been proved for reactions with a linear growth and

not for diffusion-controlled precipitation reactions. Here, the ability of the JMAK equation to

fit the experimental data of diffusion-controlled precipitation reactions has been compared

with the Austin—Rickett (AR) equation

a " 1!M[k(T )t]n#1N~1

In all cases studied the AR equation provides a better fit to the data and the obtained integer

and half-integer values of n can be interpreted in terms of the physics of the transformation

processes. The latter is mostly not possible for n values obtained from the JMAK equation. It

is concluded that for the purpose of interpreting data of precipitation reactions, the AR

equation is more appropriate than the JMAK equation.
1. Introduction
In the study of the transformations which proceed via
nucleation and growth, several mathematical descrip-
tions of the amount transformed as a function of the
time, or the transformation rate as a function of the
amount transformed, have been suggested in the liter-
ature. The best known description finds its roots in the
late 1930s when its basis was laid independently by
several researchers (Johnson and Mehl [1], Avrami
[2—4] and Kolmogorov [5]). It has since been referred
to as the Johnson—Mehl—Avrami—Kolmogorov
(JMAK), the Johnson—Mehl—Avrami (JMA) or simply
the Avrami kinetic equation. Although these early
researchers originally derived the theory only for
specific cases (in his original derivation, Avrami only
considered spherical transformed regions growing
proportional to time in all three dimensions), later the
JMAK theory was generalized to include a large num-
ber of reaction types, and it has been suggested that it
is also valid for diffusion-controlled precipitation re-
actions (see, for instance, [6]). In the generalized form,
the JMAK equation gives the fraction transformed, a,
as a function of the time, t

a " 1!expM![k(¹ )t]nN (1)

where n is a constant often referred to as the Avrami
exponent, and k(¹) is a temperature-dependent factor.
Recently, it was proved [7] that for reactions pro-
gressing via random nucleation (i.e. the probability of
the formation of a nucleus is constant everywhere in
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the untransformed volume) and linear growth, the
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JMAK equation is exact over the entire range of a.
For this type of reaction, n"4. Nevertheless, in cases
where comparisons of recrystallization experiments
with the JMAK equation were published, often the
correspondence was found to be limited to small
a values (see [8, 9]). A possible explanation for this
discrepancy may be found in a nucleation rate which
varies with the position in the sample [10].

For diffusion-controlled growth, Ham [11, 12]
stated that, even though it provides a good approxi-
mation for low fractions transformed, the JMAK
equation has no fundamental importance. Recently,
Lee and Kim [13] obtained several kinetic equations
by introducing, in addition to the parameters k(¹ )
and n, an adjustable fitting parameter termed the
‘‘impingement factor’’, c. They showed that c"0 cor-
responds to JMAK kinetics, whilst for c"1 the fol-
lowing equation was obtained

a " 1!M[k(¹ )t]n#1N~1 (2)

The above equation has been first proposed by Austin
and Rickett [14]. Lee and Kim showed that the
Austin—Rickett (AR) equation fitted the transformation
data for the formation (precipitation) of bainite plates
in two shape-memory alloys very well. This finding
suggests that the AR equation is more appropriate
than the JMAK equation for the study of precipitation
reactions.

To study the validity of the AR equation and to
compare it with the JMAK theory, the ability of the
11 3TU, UK.

JMAK and the AR equation to fit experimentally
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obtained transformation curves of a large number of
precipitation reactions, have been compared. The
values of n obtained for the various reactions have
been discussed and the status of the JMAK and the
AR equation assessed. The derivation of these equa-
tions is reviewed.

2. Derivation of kinetic equations
2.1. The fraction transformed in the

JMAK ‘‘extended volume’’concept
Similar to the works of Johnson and Mehl [1] and
Avrami [2—4], the transformation is described using
the so-called ‘‘extended volume’’ concept. In the ‘‘ex-
tended volume’’, the individual nuclei grow without
any limitation of the space, i.e. growth is not inhibited
by impingement. In applying this concept first the
volume, »

1
, of a single particle at time, t, which

nucleated at an earlier time, z, is obtained

»
1

" A
1
[G(t!z)]m (3)

where G is the growth rate, A
1

and m are constants
related to the dimensionality of the growth and the
mode of transformation. Values of A

1
and m have

been given in various works on nucleation and growth
[6]. For example, for a polymorphic reaction with the
product phase growing as spheres, m"3 and
A

1
"4p/3. Also for diffusion-controlled growth,

Equation 3 is valid (see [6]). For instance, for particles
which grow in three dimensions by diffusion of the
atoms through the surrounding matrix, m"11

2
. More

examples are given in Tables I and II.
Next the contribution of nucleation is considered.

In the derivation of the original JMAK theory, it has
been assumed that the amount of nuclei formed in
volume »

0
during a time interval dz is given by

I(z)»
0
dz, where I(z) is the nucleation rate per unit

volume at time z. Several authors have pointed out
that this apparently leads to the creation of nuclei
in the already transformed part of the material.
These nuclei have been termed ‘‘phantom nuclei’’.
Erukhimovitch and Baram [15, 16] argue that it is
necessary to compensate for this effect by adding
a term (1!a) to the nucleation rate. A fundamental
problem with the addition of the (1!a) term is that
the creation of phantom nuclei really should be con-
sidered as an impingement problem, and should not
be corrected for in this stage where transformation in
the extended volume is considered. Thus phantom
nuclei will be considered in Section 2.2 as a part of
an impingement problem. (In addition, computer cal-
culations performed by the present author indicate
that the addition of the (1!a) term to correct for
phantom nuclei has a very limited effect on the overall
transformation rate and can in no way explain the
difference between Equations 1 and 2.)

Now the contribution of the particles which
nucleated during the time interval (z, z#dz) to
the amount of transformed volume in the ‘‘extended
volume’’ at time t, »

%95
(t) is obtained by using

Equation 3
d»
%95

" A
1
I(z)»

0
[G(t!z)]mdz (4)
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TABLE I Values of n for several diffusion-controlled reactions
(see, for instance, [6, 11, 12, 41])

Conditions and geometries N u c l e a t i o n
rate

Zero (n"m) Constant

All particles growing from small
dimensions 11

2
21
2

Growth of long cylinders with
constant length 1 2

Growth of large plates with
constant surface area 1

2
11
2

Growth of grain-boundary (GB)
particles, high diffusivity in GB 1

2
1
2

Growth of particles, initial size large
compared to changes due to growth 1

2
—

Growth on dislocations 2
3

—

TABLE II Values of n for polymorphic changes, recrystallization,
discontinuous precipitation, eutectoid reactions, interface control-
led growth, etc (see, for instance, [6, 41])

Conditions and geometries Nucleation rate

Zero (n"m) Constant

All particles growing in three
dimensions starting from small size 3 4

All particles growing in two
dimensions starting from small size 2 3

All particles growing in one
dimension starting from small size 1 2

Grain-boundary nucleation
after saturation 1

Integrating and introducing a
%95

"»
%95

/»
0

yields

a
%95

" P
5

0

A
1
I(z)[G(t!z)]mdz (5)

For several expressions of the nucleation rate, I(z),
analytical expressions for Equation 5 can be obtained.
If the nucleation rate is constant during the entire
transformation, one obtains

a
%95

(I"constant) " A
2
IGmtm`1 (6)

where A
2

is a constant. When all nuclei are formed
whilst a is still negligible, i.e. when the nucleation rate
is zero during practically the entire transformation,
a
%95

is given by

a
%95

(I"0) " A
3
Gmtm (7)

where A
3

is a constant. Hence, this case arises for the
limit of I(z) decreasing infinitely fast, and it can, for
instance, arise when the number of nucleation sites is
limited and all sites are used for nucleation very early
on in the transformation. This case has been referred
to as ‘‘site saturation’’, and this term is adopted in this
work. Hence, for both cases (Equations 6 and 7) one
obtains

a
%95

" [k(¹ )t]n (8)

with k(¹ ) a temperature-dependent factor determined
by A , G and I, or (for the site saturation case) A and
2 3
G. Also for I(z)&ta with a an integer larger than unity,



Equation 5 results in an expression like Equation 8
(with in this case n"m#1#a). However, it seems
that for an isothermal experiment a continuously
increasing nucleation rate is unrealistic, and that an
increasing nucleation rate can realistically only occur
as a transient effect in the very first stages of the
reaction. (However, if nucleation occurs at well-de-
fined heterogeneous nucleation sites, such as, for
instance, dislocations, whilst the number of these sites
increases with time, an increasing nucleation rate
could be possible.) Of more practical importance is the
case of a decreasing nucleation rate. As Equations 6
and 7 are the limiting cases for a constant I and an in-
finitely fast decreasing I, it is possible that the case of a
decreasing nucleation rate corresponds to Equation 8
with m(n(m#1. However, this can only be the
case for specific functions I(z); for example, if I de-
creases from I

0
at a"0.01 to I

%
at a"0.99 there is

only one function I(z) that results in a
%95

being given by
a function of the type in Equation 8. Hence, for a de-
creasing nucleation rate, in specific cases Equation 8
might still hold, but in general no such simple relation
is valid. Various authors have considered which values
n can take (see [6]). Some of these results are presented
in Tables I and II.

2.2. Impingement
Next the problem of impingement is considered. Sev-
eral authors (see [3, 6, 15, 16]) have shown that in
order to derive the JMAK equation, one must assume
that the actual transformed volume, »

5
, and the ex-

tended volume are related through

d»
5
" A1!

»
5

»
0
Bd»

%95
(9)

which is equivalent to

da
da

%95

" (1!a) (10)

and which results in

1!a " exp(!a
%95

) (11)

From the latter equation and Equation 8, the JMAK
equation (Equation 1) is readily derived.

As mentioned before, it can be proved [7] that the
above approach is correct when nucleation is random
and growth is linear, but no such proof exists for
diffusion-controlled growth. In fact, the following two
examples show that for diffusion-controlled reactions,
the JMAK approach to impingement is invalid. Con-
sider, first, a diffusion-controlled reaction for which
nucleation in the undepleted part of the alloy is
random. As nucleation will be dependent on solute
concentration, it is clear that, in this case, random
nucleation throughout the volume cannot be main-
tained beyond the point where a significant part of
the matrix becomes significantly depleted of solute. In
this stage of the reaction, nucleation will be strongly
place-dependent, which violates an assumption in the
JMAK treatment. For a second example, a zero nu-

cleation rate (i.e. site saturation) is considered. Ham
Figure 1 Fraction transformed, a, versus a
%95

describing impinge-
ment according to the two models (the JMAK model and the AR

[11, 12] has shown that for a regular array of precipi-
tates growing by diffusion through the surrounding
matrix, Equation 10 underestimates the impingement
effect. For a less-regular distribution, it is expected
that impingement of diffusion fields will occur earlier
on in the transformation and that hence for an irregu-
lar distribution precipitate impingement will be even
stronger than for the regular array. So independently
of whether the precipitates are situated on a regular
array or distributed in a less-regular matrix, Equation
10 underestimates the impingement effect.

In an alternative approach of the impingement
problem, Lee and Kim [13] considered impingement
to be described by

da
da

%95

" (1!a)1`c (12)

where c is an ‘‘impingement parameter’’. For c"0 one
obtains the JMAK equation, whilst for c"1 (i.e.
a stronger impingement effect as compared to the
JMAK treatment) the AR equation (Equation 2) is
obtained. The latter provided a good fit for the pre-
cipitation of bainite plates in two shape-memory
alloys over a wide temperature range (180—300 °C). In
view of this finding and of the reasoning in the pre-
vious paragraph, it is thought that the AR equation
is more appropriate than the JMAK equation for
diffusion-controlled reaction.

In Fig. 1 the results of the impingement treatment
according to the JMAK model (i.e. Equation 10) and
the impingement treatment according to Equation 12
with c"1 (resulting in the AR equation) are com-
pared. This figure shows that up to a about 0.2, the
two treatments give results that are practically indis-
tinguishable. For higher values of a, the difference
between the two treatments increases markedly.

2.3. Grain-boundary nucleation and
growth of pre-existing particles

Generally, a single transformation may occur via dif-
ferent nucleation processes. For instance, nucleation
may occur preferentially at grain corners or grain
boundaries, before nucleation in the grain interior
equation).
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becomes important. To account for these effects, the
following relatively simple expansion of the theory
presented above is proposed.

When two types of precipitation processes occur,
a
%95

is given by

a
%95

" P
5

0

C
1
I
1
(z)[G(t!z)]m1 dz

#P
5

0

C
1
I
2
(z)[G(t!z)]m2 dz (13)

where the symbols have the same meanings as before,
whilst subscripts 1 and 2 stand for processes 1 and 2.
For the case where both processes occur, via either
constant nucleation rate or site saturation, it follows
that

a
%95

" k
1
(¹ )tn1#k

2
(¹ )tn2 (14)

The relation between a and a
%95

is again assumed to be
given by Equation 12.

3. Comparison of kinetic equations with
experiments

Equations 1 and 2 are now compared with data on
several precipitation reactions which proceed by
nucleation and diffusion-controlled growth. The
examples were selected mainly from past publications
by the present author, work in progress and work
performed in groups in which the author worked and
is familiar with. Three main criteria were used for
selection: (i) transformation data should be available
over the entire range of a, (ii) scatter should be low,
(iii) curves should be sigmoidal on a logarithmic time
scale. It is stressed that once selected for study on the
basis of these criteria, none was later omitted from this
publication. Hence, although somewhat biased to-
wards the field of expertise of the author (most of the
transformations studied are transformations in alumi-
nium-based alloys), the selected examples are in no
way biased towards any of the two theories presented.
The theory predicts that n values should be integer
or half integer. Hence, unless noted, only integer or
half integer values of n are used in the fitting of the
experimental data.

3.1. Formation of the equilibrium d (AlLi)
phase in Al—Li

Noble and Thompson [17] have studied the precipita-
tion during isothermal ageing of the equilibrium
d (AlLi) phase in Al—Li alloys using resistivity
measurements. The fraction transformed during
ageing of an Al—2 mass%Li alloy at 300 °C is pres-
ented in Fig. 2. Neither the JMAK equation nor
Equation 2 were able satisfactorily to fit the entire
transformation.

As the overall evolution of the fraction transformed
in the Al—2 mass%Li alloy is thought to be due to
a combination of grain-boundary precipitation and
precipitation in the grain interior (see next Section),
Equations 12 and 14 were used to fit the data. Using

n
1
"1

2
and n

2
"21

2
, a very good fit can be obtained
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Figure 2 Fraction transformed during the formation of the d (AlLi)
phase in Al—2 mass % Li at 300 °C fitted by a model which takes
both nucleation on grain boundaries and nucleation in grains into
account (the combination of Equations 12 and 14).

using these equations (see Fig. 2). Two other curves
in Fig. 2 are based on the assumption that solely one
of the two processes occurs, and that hence Equa-
tion 2 is valid. The same procedure with a

%95
determined by two processes according to Equation
14 but with the relation between a and a

%95
according

to the JMAK method (i.e. Equation 11), also yields
a good fit with the data (results not presented),
provided n

2
"11

2
.

3.2. Precipitation in an Al—Si alloy
Van Mourik and co-workers [18, 19] studied the pre-
cipitation in melt-spun Al—Si alloys by means of lattice
parameter measurements. The lattice parameter of the
aluminium-rich phase in binary Al—Si is a linear func-
tion of the amount of silicon dissolved in it [20], and
hence the lattice parameter is a linear function of the
fraction transformed. By estimating the start and the
end value of the lattice parameter from a set of data,
the fraction transformed can be obtained. Using Fig. 4
in [18], this has been done for precipitation in the
Al—10.3 at %Si alloy aged at 124 °C; results are pres-
ented in Fig. 3. When only integer and half-integer
values of n are considered, the best fitting curve for the
JMAK equation is obtained for n"1 and for the AR
equation with n"11

2
. Both fits show significant devi-

ation from the experimental values (see Fig. 3), but the
overall quality of the fit, as measured by the average
squared deviation between experimental points and

fit, (*a)2, is better for the fit with the AR equation (for

the JMAK fit, (*a)2"1.7]10~3, whilst for the fit

with the AR equation, (*a)2"1.3]10~3). When n is
not limited to integer and half-integer values, the
difference between the quality of the fits obtained
with the two equations increases markedly, and with
the AR equation for n"1.3, a quite good fit

((*a)2"0.4]10~3) can be obtained.

3.3. Precipitation in an Al—Si—Cu alloy
The present author and co-workers studied the preci-
pitation in solution-treated and quenched Al—19.1 at%

Si—1.3 at%Cu alloys by means of lattice parameter



Figure 3 Fraction transformed during the ageing of a liquid-quen-
ched Al—10.3 at%Si (11 mass%) alloy. Ageing temperature 124 °C.
The quality of the fit with the AR equation, as measured by the
average squared deviation between experimental points and fit, is
somewhat better as compared to the fit with the JMAK equation
(data from [18]).

measurements [21]. As for Al—Si, the aluminum-rich
phase lattice parameter in Al—Cu is a linear function of
the amount of dissolved alloying element [22, 23],
whilst experiments on an Al—1 at% Cu—1 at%Si
alloy have indicated that in the ternary alloy the
effects of dissolved silicon and copper on the lattice
parameter are additive [21]. There are strong indica-
tions that the precipitation of copper in the form of the
h@ (Al

2
Cu) phase and the precipitation of silicon in the

form of pure silicon (diamond structure) are linked
processes [24], with the formation of silicon-phase
precipitates inducing the formation of copper-rich
precipitates. Hence it can be expected that the lattice
parameter change is proportional to the amount of
silicon precipitated. Thus, analogous to the Al—Si
alloy, the fraction of silicon precipitated can be
obtained from the changes of the measured lattice
parameters. Fig. 4 shows that the AR equation with
n"11

2
gives a near perfect fit to the data. The best fit

for the JMAK equation is obtained for n"1, but this
fit is worse than that with the AR equation.

3.4. Formation of the Ll2 ordered phase in
Al—Mg and Al—Li

In Al—Mg alloys at low temperatures, an Ll
2

ordered
phase can form. In the literature this precipitate has
been referred to as bA phase or as Guinier—Preston
(GP) zones. The formation of this precipitate at 80 and
85 °C has been studied recently by Zahra and Starink
[25] using isothermal calorimetry. For this, Al—15Mg
samples were solution-treated and air-cooled to room
temperature before being introduced into the calori-
meter which was stabilized at the ageing temperature.
A full description of the procedures for the calorimetry
experiments has been presented elsewhere [26].
Selected-area diffraction on transmission electron
microscopy (TEM) samples revealed that the observed
exothermic heat effect is due to the formation of the
Ll

2
ordered phase. From the calorimetry curves the

fraction transformed was calculated (to do this an
extrapolation of the heat flow to long time is neces-

sary, see [26]; the result is presented in Fig. 5. Fitting
Figure 4 Fraction transformed during the ageing of a solution-
treated and quenched Al—19.1 at % Si—1.3 at % Cu alloy. Ageing
temperature is 150 °C (data from [21]).

Figure 5 Fraction transformed during the formation of the Ll
2

ordered phase in Al—15Mg at 80 °C.

with integer and half integer values of n gave unsatis-
factory results. In Fig. 5, fitted curves for optimized
n values are presented. It is clear that again the AR
equation gives the better result.

Apart from the formation of the Ll
2

ordered phase
in Al—15Mg discussed above, transformation data
concerning the formation of Ll

2
ordered (d@) phase in

Al—2 mass%Li (Fig. 12 in [17]) and the Ll
2

ordered
phase in melt-spun Al—16 at%Mg (Fig. 7b in [27])
were also fitted with the JMAK equation and the AR
equation. In both cases, the AR equation provided
a better fit to the data.

3.5. Internal nitriding of an Fe—2 at % Al
alloy

Biglari et al. [28] studied the mass change due to
internal nitriding of a recrystallized and cold-worked,
binary Al—2 at%Al alloy by holding it in a NH

3
/H

2
gas mixture inside a thermobalance. Under the experi-
mental conditions (partial pressures, temperatures)
used in this work, the mass change of the sample is due
to the formation of AlN precipitates in the alloy. In
these experiments thin (40.1 mm) samples were used
which ensured that the concentration of dissolved
nitrogen in the sample is constant, i.e. the reaction rate
is not determined by nitrogen diffusion through the

sample.
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Figure 7 Fraction transformed during internal nitriding of a cold-

Figure 6 Fraction transformed during internal nitriding of a recrys-
tallized Fe—2 at%Al alloy (data from [28]).

The fraction transformed during isothermal nitrid-
ing of the recrystallized alloy at 545 °C (818 K) is given
in Fig. 6. Biglari et al. [28] limited their analysis to
a(0.4 and found that for these low a values the
JMAK equation with n"3.7 provided a reasonably
good fit. This finding is confirmed in the present work,
but it is stressed that for a'0.4 this type of fit is very
bad. The fits presented in Fig. 6 show that using the
JMAK equation, the best fit for the entire range of a
is obtained for n+2.5, whilst with the AR equation
the best fit is obtained for n"4. Again the quality of
the fit is better with the AR equation. (The fit can be
improved further by taking for n the non-integer value
3.9.)

The fraction transformed during nitriding of a
cold-worked Fe—2 at %Al alloy at 530 °C (803 K) is
given in Fig. 7. Fitting of the JMAK equation for the
entire range of a results in n"1. Biglari et al. [28]
obtained the same value by fitting the JMAK equation
for a"0.4—0.9. However, fitting with the AR equation
results in better quality fits and, for n"11

2
, the fit is

nearly perfect for a40.8 (see Fig. 7). For a'0.8,
deviations are observed from the latter fit. However,
inspection of curves obtained by Biglari et al. [28] at
other temperatures shows that for this range of a, the
curve obtained at 530 °C has an unusually steep part
(i.e. unusually high reaction rates) as compared to the
other curves. Hence this deviation is not characteristic
and is significantly reduced if another temperature
worked Fe—2 at% Al alloy (data from [28]).
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TABLE III Summary of results obtained by Lee and Kim [13] for
the transformation in three Cu—Zn—Al shape-memory alloys

Alloy Cu Zn Al Best fit n Resulting structure
(from TEM)

A 68.6 28.3 3.1 AR 2.5 Plates of a
1

bainite
(9R structure)

B 71.8 23.1 5.1 AR 2.2 Plates of a
1

bainite
(9R structure)

C 78.0 12.8 9.2 JMAK 2 Eutectoid-like structure
with alternating lamellae
of c

2
(cubic) and a (FCC)

phase

was chosen. (However, at the other temperatures
studied, curves could only be obtained for a'0.2 and
these curves cannot be used for a fit for the entire
range of a including this important low-a range.) In
conclusion, for cold-worked Fe—2 at%Al the AR
equation also yields the better fit, and n equals 11

2
is obtained.

3.6. Transformation in Cu—Zn—Al
shape-memory alloys [13]

Lee and Kim [13] studied the transformation in three
Cu—Zn—Al shape-memory alloys by resistivity deter-
minations for at least five temperatures per alloy. The
alloys had been homogenized and quenched to obtain
the b

1
(ordered) structure. In Table III the composi-

tions of the three alloys are listed, together with the
resulting microstructure after completion of the trans-
formation, which was obtained from TEM. Lee and
Kim [13] found that the transformation kinetics in
alloys A and B could be well described by the AR
equation, whilst those for alloy C fitted the JMAK
equation well.

4. Discussion
In the previous section the transformation curves of
several reactions which proceed by nucleation and
growth were fitted with both the JMAK equation
(Equation 1) and the AR equation (Equation 2). In all
cases, better fits to the experimental data were ob-
tained with the AR equation. In this section, the
n values obtained from these fits are discussed.

4.1. Obtained n values for precipitation
TEM studies on Al—Li based alloys generally indicate
that d phase precipitates preferentially at grain bound-
aries but that it also precipitates in the grains [29—31].
Hence the overall evolution of the fraction trans-
formed in the Al—2 mass % Li alloy is ascribed to
a combination of grain-boundary precipitation and
precipitation in the grain interior and Equation 14
should be employed. It has been shown before that for
an Al—Li—Cu—Mg alloy, the lithium depletion of the
grains close to the grain boundary is controlled solely
by lithium diffusion to the grain boundary [32]. It
is thought that this also holds for the binary Al—Li



alloy and hence for this process m
1
"n

1
"1

2
. For

d phase precipitation in the grain interior, it appears
reasonable to assume a constant nucleation rate and
hence m

2
"11

2
, and n

2
"21

2
. The data on the fraction

transformed are fitted using Equations 12 and 14. The
results presented in Fig. 2 show a close-to-perfect
correspondence between theory and experiment. The
two other curves in Fig. 2 are based on the assump-
tion that only one of the two processes occurs and
they show that grain-boundary precipitation is the
most important process up to their cross-over point,
whilst afterwards, nucleation in the grain interior be-
comes the dominating process of d precipitation. This
finding corresponds qualitatively with the following
reasoning. The production process of Al—Li alloys
used by Noble and Thompson [17] involved conven-
tional casting, cold-rolling and solution-treatment
at 580 °C. Hence, the alloys must possess a rela-
tively large recrystallized grain size and this indicates
that grain-boundary precipitation should be less
important than nucleation and growth in the grain
interior.

The same procedure with a
%95

determined by two
processes according to Equation 14, but with the
relation between a and a

%95
according to the JMAK

method (i.e. Equation 11), also yields a good fit with
the data, provided n

2
"11

2
. However, this value

indicates that d phase precipitation in the grain in-
terior would occur via site saturation. This appears
unlikely, as d phase is generally thought not to nu-
cleate on precursors or on defects [30], i.e. there
appears to be no reason why the number of nucleation
sites of d precipitates should be limited.

In summary, in the analysis for d phase precipita-
tion it is concluded that, in view of the fact that it is
known that, for this reaction, both nucleation on the
grain boundary and in the grains is important, Equa-
tion 14 in combination with either Equation 11 (from
the JMAK theory) or Equation 12 with c"1, gives
the best results. As the fitting with the combination of
Equation 12 with Equation 11 (impingement accord-
ing to the JMAK model) yields an improbable value of
n
2
, it is thought that impingement with c"1 (i.e.

according to the AR model) is the correct description.
The reasoning applied above to d phase precipita-

tion has some general implications when the quality of
fits are assessed. The application of Equation 14 as
demonstrated in Fig. 2 shows that a deviation be-
tween fit and experimental data for low a may be due
to an initial transformation process with a lower
n value as compared to the dominating transforma-
tion process. In general, for all phases which can
precipitate both in the grains and on the grain
boundaries, this combination of processes can be
expected to occur. Another example is a precipitation
reaction where some product phase is already present
at the start of the transformation. In such a case,
precipitation on the already present product phase
can initially be dominant, whilst later a second process
may be dominant. This situation should arise in
a liquid-quenched hypereutectic Al—Si alloy as in this
alloy the matrix is supersaturated with about

2—3 at % Si whilst the remaining silicon is mainly
present as finely dispersed silicon particles [33].
Hence, in Fig. 3 the deviations from the fit with AR
equation at low a are interpreted as being due to
initial precipitation on these finely dispersed silicon
particles. This indicates that although the fit at low
a is not good at all, still the experimental data in
Fig. 3 are fully consistent with the treatment of im-
pingement according to the AR equation. Also, it is
clear that the precipitation of silicon from the alumi-
nium-rich phase is a diffusion-controlled process, i.e.
m should equal 11

2
. It is further well known that nu-

cleation of silicon precipitates occurs on sites where
dislocation loops are present [34]. As these loops form
before the transformation starts, all nucleation sites
are thought to be used very early on in the transforma-
tion (i.e. a case of site saturation) and hence n"m. In
accordance with this, the transformation data for the
two Al—Si based alloys can be fitted either reasonably
well (for Al—Si) or near perfectly (for Al—Si—Cu) to the
AR equation and n"11

2
. (Figs 3 and 4). As was argued

above, the quality of the fit for the Al—Si alloy can be
further improved by using Equation 14 in order to
take account of some initial precipitation by growth of
existing small silicon particles. This will remove the
deviation between fit and data for small values of a.
As the Al—Si—Cu alloy was produced via hot extrusion
after solidification and subsequently solution-treated,
this alloy will not contain a fine dispersion of silicon
particles and no deviations of the fit of the AR
equation at low a are expected. This is in agreement
with the results obtained (see Fig. 4). Contrary to the
good results obtained with the AR equations, the
JMAK equation fits the data for the Al—Si based
alloys very badly with n"11

2
. A better fit (though still

deficient for a'0.75) is obtained with n"1, but fol-
lowing the reasoning put forward, n(11

2
is physically

unreasonable.
Also for the formation of the Ll

2
phase in Al—15Mg

cooled directly to the ageing temperature, the AR
equation gave far better fits to experimental data
compared to the JMAK equation. However, the
n value obtained from the optimal fit with the AR
equation (1.15, see Fig. 5) is somewhat lower than
that expected for this diffusion-controlled reaction
(n"11

2
), which seems difficult to explain. It is sugges-

ted that coarsening in the latter stages of the reaction
can be the reason for the somewhat low value of n.
Within the concepts presented in Section 2, coarsening
can be thought of as a process which reduces the
number of growing nuclei, i.e. for the latter part of
the transformation, I(t) will be negative. Thus when
coarsening occurs, the transformation rate will de-
crease as compared to the rate obtained with the AR
equation, and n will decrease below 11

2
. The obtained

n values for the formation of Ll
2

ordered (d@) phase in
solution-treated and quenched Al—Li (Fig. 12 in [17])
and the Ll

2
ordered phase in melt-spun Al—Mg

(Fig. 7b in [33]) (0.7 and 1, respectively) are not yet
understood. However, as mentioned before, in both
cases, the AR equation does provide better fits as
compared to the JMAK equation.

In addition, for the internal nitriding of recrystal-

lized Fe—2 at % Al, the AR equation yielded a better
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fit as compared to the JMAK equation. The n value of
4 as obtained with the AR equation is slightly higher
than the n value of 3.7 obtained by Biglari et al. [28],
and the average n value of 3.5 obtained by Somers
[35]. This small difference can be ascribed to the
small difference between Equations 1 and 2 in the
range a3(0, 0.4) which was used by Biglari et al. and
Somers for obtaining their n values (see Fig. 1). TEM
experiments have shown [36] that AlN nucleates on
dislocations and that new dislocations are generated
during the precipitation, and hence one can expect the
nucleation rate to increase with time. If the precipita-
tion rate is determined by three-dimensional diffusion,
whilst the nucleation rate increases approximately as
t!, then one would have n"11

2
#1#a. Hence the

measured n value of 4 indicates a+11
2
. If this ex-

planation is correct, one would expect that, for the
cold-rolled alloy where a large amount of dislocations
are present from the start of the precipitation process,
the precipitation would correspond to three-dimen-
sional diffusion-controlled precipitation for the site
saturation case, i.e. n"11

2
. This is indeed the n value

found with the AR equation (see Fig. 7), and hence the
present analysis of transformation curves of both cold-
worked and recrystallized Fe—Al using the AR equa-
tion is fully consistent with the nucleation and diffu-
sion-controlled growth mechanisms of AlN as put
forward above. Further it is clear that the n value of
1 as obtained by Biglari and co-workers [28, 37],
which is inconsistent with a reaction involving three-
dimensional growth, is erroneous, because it was
obtained using the JMAK equation in a range where it
deviates strongly from the AR equation (a between 0.4
and 0.9).

Summarizing the analysis of nitriding of recrystal-
lized and cold-worked Fe—2 at% Al with the aid of the
AR equation (Equation 2) it is shown that:

(i) with the AR equation for both recrystallized and
cold-worked Fe—2 at%Al, n values can be derived
which are consistent with nucleation of AlN on dislo-
cations and growth by three-dimensional diffusion;
n values obtained with the JMAK equation are not
consistent with a single nucleation and growth model;
and

(ii) with the AR equation the data can be fitted over
nearly the entire range of a; the JMAK equation can
fit the data only up to a+0.3.

Hence with the AR equation, the analysis of the
data is very much improved.

Using the AR equation, Lee and Kim obtained n
values close to 21

2
for precipitation in their Cu—Zn—Al

shape memory alloys A and B. These n values corres-
pond to diffusion-controlled growth with constant
nucleation rate.

In concluding this section, the results of the com-
parison of the applicability of the AR equation and the
JMAK equation for the different precipitation reac-
tions are gathered in Table IV. In all cases where one
nucleation process occurs, the AR equation gave bet-
ter fits than the JMAK equation. In the majority of
cases, the n values are close to 1.5 or 2.5 and can be
explained, by site saturated nucleation or nucleation

at a constant rate.
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TABLE IV Summary of precipitation reactions studied and the
kinetic equation which fitted them best

Reaction! Best fitting Obtained
equation n values

Precipitation of d (AlLi) phase
in WQ Al—Li 14 2.5

Precipitation in a LQ Al—Si alloy AR/14 1.5
Precipitation in an WQ Al—Si—Cu

alloy AR 1.5
Formation of Ll

2
ordered phase

in LQ Al—Mg AR 1
Formation of Ll

2
ordered phase

in WQ Al—Li AR 0.7
Formation of Ll

2
ordered phase

in AQ Al—Mg AR 1.15
Internal nitriding of recrystallized

Fe—2 at% Al AR 4
Internal nitriding of cold-worked

Fe—2 at% Al AR 1.5
Transformation in Cu—28Zn—3 Al AR 2.5
Transformation in Cu—23Zn—5 Al AR 2.2

!LQ"quenched from liquid state by meltspinning; WQ"water
quenched; AQ"cooled (quenched) in air.

4.2. Eutectoid reactions and autocatalytic
reactions

The above analysis shows that for precipitation reac-
tions the AR equation is more appropriate as the
JMAK equation. It was noted by Lee and Kim [13]
that the transformation in the Cu—13Zn—9Al alloy
the JMAK equation (with n"2) yields better fitting
curves as compared to AR equation. Also, the fraction
transformed during a perlitic transformation in a
eutectoid steel can be fitted well with the JMAK
equation and n"2.16 [38]. In both cases, the
resulting microstructure is lamellar eutectoid-like.
According to the classic works on transformations in
eutectoid steels (see [39]), a perlitic structure, which,
in steels, is a combination of alternating plates of
Fe

3
C and a-iron, nucleates from the austenite by the

formation of one of the two phases (Fe
3
C in steels) on

grain boundaries. Next the Fe
3
C grows and a-iron

nucleates on it, and this combination of one lamella of
Fe

3
C and one lamella of a-iron can be considered to

be the first fully transformed region. Subsequent
formation of transformed regions occurs mainly by
nucleation on previously transformed regions in such
a way that the characteristic alternating lamellar
structure is obtained. Hence this transformation pro-
cess is autocatalytic: nucleation occurs on previously
transformed regions. The assumption of random nu-
cleation made in the derivation of the JMAK equation
is clearly not valid here, and the good fit between the
JMAK equation and the experimental data for the
autocatalytic eutectoid reactions may be fortuitous.
This point is discussed in the following paragraph.

In an autocatalytic eutectoid-like reaction, new
reaction products nucleate on the surfaces of pre-
existing products, and hence it can be assumed that
the growth of each product will effectively be halted
when most of its surface is covered by newly nucleated
product. If the nucleation rate per unit of surface, I
4
is assumed constant, this means that each product



Figure 8 Fraction transformed during the perlitic transformation in
a eutectoid steel. The ability of the JMAK equation and Equation
16 (with s"1) to fit the data is nearly equal (data from [38]).

will grow for an approximately fixed time interval, s,
to attain an approximately constant volume. Hence,
the reaction rate can be approximated as

da
dt

" B
1
I
4
S(t!s

$
) (15)

where S(t) is the surface area of the reaction product
available for nucleation, s

$
(s, B

1
is a constant.

Before impingement becomes important, S will be
proportional to ar, with r+2

3
. Later on, the surface

area available will be reduced by impingement. To
correct for this, it is simply assumed that S is propor-
tional to ar(1! a)s, where s is expected to be close to
unity. Hence it follows that

da
dt

" B
2
I
4
[a(t!s

$
)]r[1!a(t!s

$
)]s (16)

where B
2

is a constant. It can be shown that trans-
formation curves obtained with the latter equation
are very similar to transformation curves obtained
with the JMAK equation. For instance, with s

1
"0,

r"1!1/n and s"0.774, 0.7, 0.664 for n"2, 3, 4,
transformation curves which are practically indistin-
guishable from JMAK curves can be obtained (see
also [40]). Also, with s"1, curves which are quite
similar to JMAK curves over a large range of a values
can be obtained. In order to give a specific example of
how Equation 16 can explain observed transforma-
tion curves, the data on the perlitic transformation
in eutectoid steel (from [38]) has been fitted with
Equation 16 taking s"1 and s

1
"0. The result, pre-

sented in Fig. 8, shows that with r"0.6, Equation 16
gives a fit a'0.15 which is even somewhat better than
the JMAK fit. The marginally worse quality of the fit
for a(0.15 is not surprising if one considers that for
this stage of the reaction little surface area is available
for the autocatalytic process, and hence nucleation is
probably dominated by another mode of nucleation.
(In the eutectoid steel this process would be grain-
boundary nucleation.)

5. Conclusion
It has never been proved that the JMAK equation can

fit data of diffusion-controlled precipitation reactions.
In this work, the ability of the JMAK equation to fit
such experimental data has been compared with the
Austin—Rickett (AR) equation

a " 1!M[k(¹ )t]n#1N~1 (2)

In most cases, the AR equation immediately provided
a better fit to the data (see Table IV) and the obtained
integer and half-integer values of n could be inter-
preted consistently in terms of the physics of the
transformation processes. The latter is mostly not
possible for n values obtained from the JMAK equa-
tion. It is concluded that the AR equation is more
appropriate in interpreting data of precipitation reac-
tions than the JMAK equation.
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